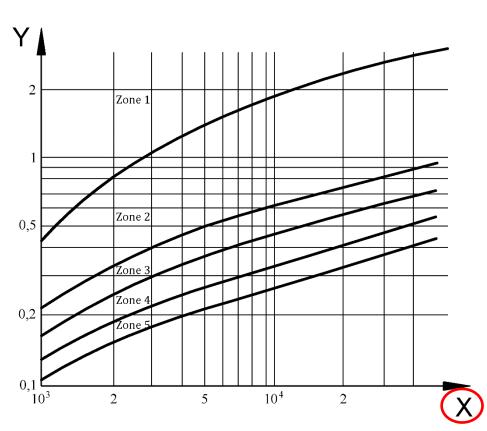


Opération de Recherche TERRANOVA Terrassements Novateurs

Nantes, 28 mai 2018

PLATEFORME D'INFRASTRUCTURES


LES MODULES DES SOLS TRAITÉS

Sébastien Hervé – Laboratoire d'Angers

Présentation de la problématique

Nouvelle norme (pr) EN 16907-4 : traitement à la chaux et/ou aux liants hydrauliques

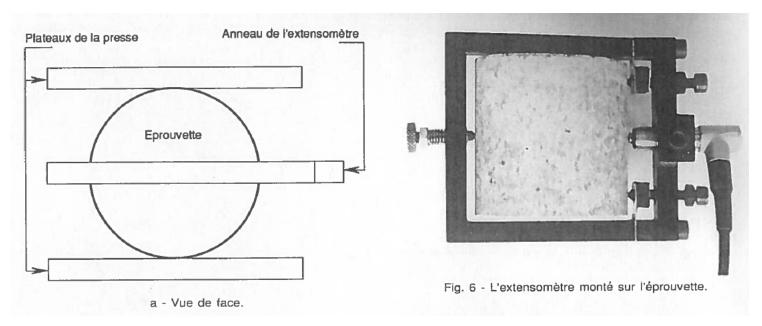
Classement des matériaux traités suivant la zone mécanique à 90 jours :

X : Module d'élasticité E en MPa

Mesuré suivant 3 méthodes équivalentes :

- E = E_t (valeur de référence / GTS)
- E = E_{it} (pratique GTS)
- E = k. Ec, avec $k \ge 1$

La valeur de k dépend de la nature des sols et du mode de préparation des éprouvettes. Elle peut être déterminée à partir d'études comparatives menées localement dans des conditions identiques de préparation des éprouvettes (teneur en eau et degré de compactage), validées par des essais croisés.

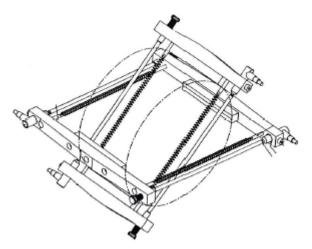

Quelques données historiques ...

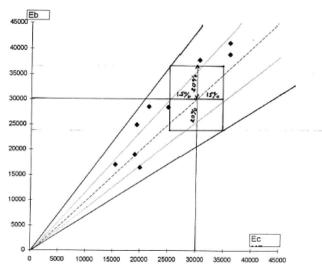
Travaux de Nguyen Dac Chi:

- 1969 : « Comparaison des modules obtenus par différentes méthodes d'essai sur des graves traitées aux liants hydrauliques »
- ⇒ Modules en Ec, nécessité d'un élancement de 2 . Mesures des déformations par jauges ou extensomètres. Mesure en traction directe délicate par suite des faibles déformations
- 1991 : « Détermination du module élastique des matériaux de chaussées TLH avec l'essai de compression diamétrale »
- \Rightarrow Mesure du couple (E, R_t) pour calculer l'IQE (indice du qualité élastique » par l'essai de compression diamétrale.

Quelques données historiques ...

Dispositif avec extensomètres sur le diamètre horizontal (Dac Chi 1991)


$$\Rightarrow$$
 E = k. \underline{f} , avec k _{moyen} = 0,291 - k est fonction de ν


(... mais incertitude \pm 15% et v proche de 0, au lieu de 0,15 à 0,25)

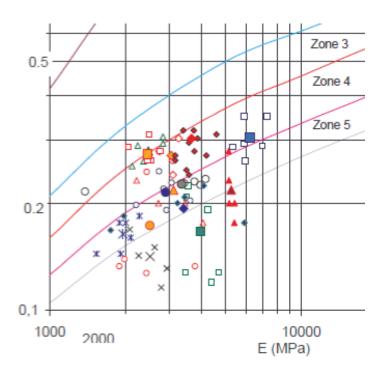
Quelques données historiques ...

- 1996 : « Mise au point d'un système d'extensomètre pour déterminer le coefficient de Poisson et le module d'Young d'un matériau par l'essai de compression diamétrale – Application aux MTLH routiers » (article GTS 1997)

Dispositif avec extensomètres inclinés à 60° permettant de mesurer ν

Validation par essais comparés Eit / Ec (LR Toulouse et St-Brieuc) sur duralumin, GC et SC

Mais : écart de \pm 15% pour les MTLH => proposition de tests sur matériaux identiques pour préciser les causes des écarts

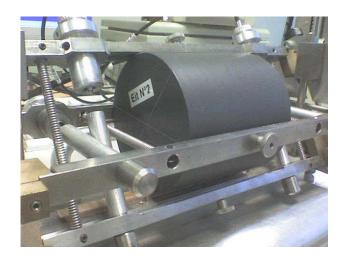

Pratique actuelle

Zones mécaniques définies par :

- GTR 1992: module d'Young et essai en traction directe R_t = 0,9 R_{tb}
- GTS 2000 : module élastique E (NF P 98 232-3) et $R_t = 0.8 R_{it}$
- NF P 98 232-3 remplacée en août 2017 par NF EN 13286-43, norme
 « chaussées » pour couche de base, de fondation ou de forme MTLH => mesure
 de E par Et, Eit ou Ec (corpus normatif chaussées : E = Ec = Et)
- La nouvelle norme EN 16907-4 reprend la NF EN 13286-43, en introduisant, pour Ec, la correction E = k Ec (k ≥ 1)

Questions sur la représentativité des mesures E / R_t

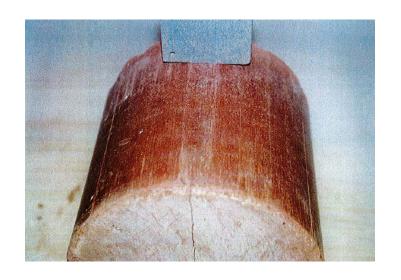
Essais croisés sur limon traité LH (2007) :

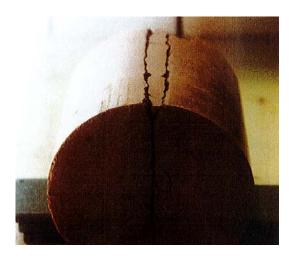


- 1 limon, 1 liant, 1 seul technicien pour la fabrication ...
- ⇒ Rt varie dans un rapport de 2,5 et E dans un rapport de 5!
- ⇒ forte influence des variations du sol. Influence de la mesure ?

Questions sur la représentativité des mesures E / R_t

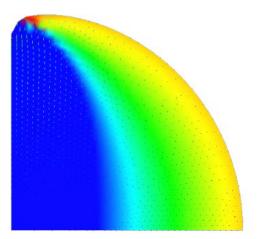
Pour écarter la variabilité due aux sols, essais croisés sur étuis PVC (9 laboratoires, matériau de module élastique E = 3200 MPa – \$\phi\$ 10 cm)

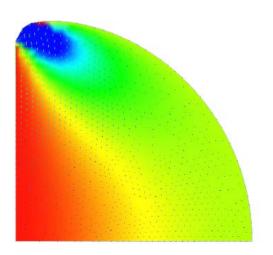



Sur matériaux isotropes et parfaitement élastiques :

- pour E_c : incertitude de 3 à 8 % incertitude élargie 50 < U < 288 MPa
- pour E_{it} : incertitude de 6 à 14 % incertitude élargie 188 < U < 488 MPa
- \Rightarrow Incertitudes dans un rapport de 2 à 3 entre E_c et E_{it} , liées à la chaîne de mesure
- \Rightarrow Déformations de 5 à 10 μ m en E_{it} contre 35 à 70 μ m en E_c : limite de précision des capteurs analogiques ? + Calage difficile des extensomètres sur plan oblique

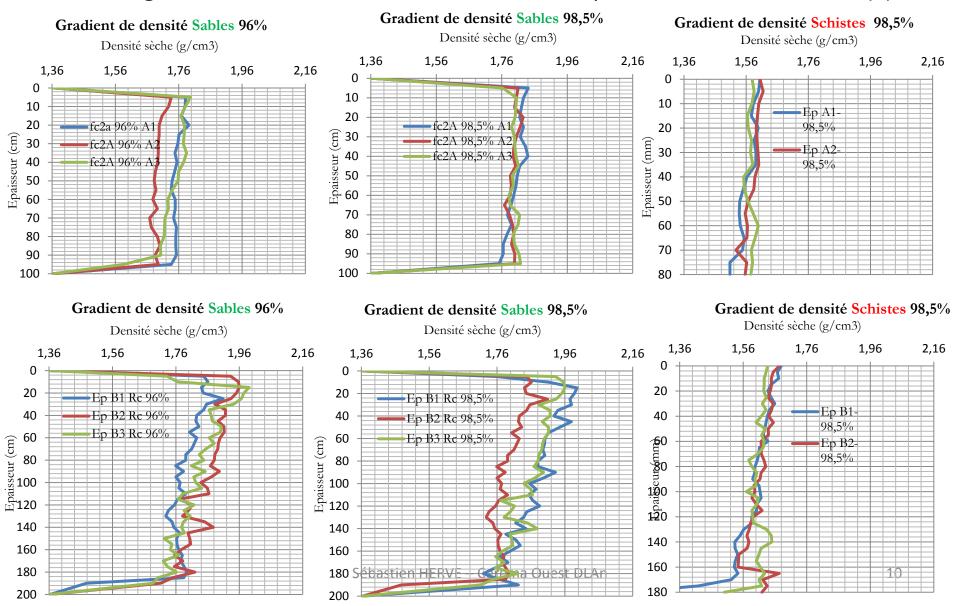
Causes de dispersions des mesures de module


Plastification et cisaillement au contact du plateau (Bimbard 2002)



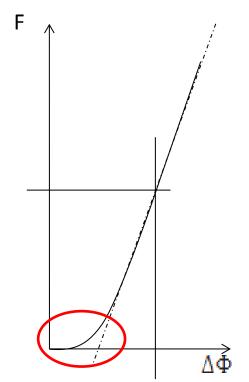
Répartition complexe des contraintes (Traore 2010)

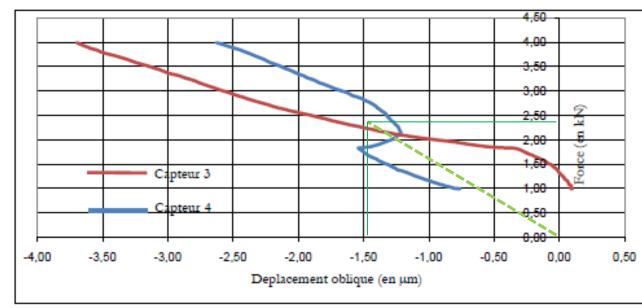
En compression:

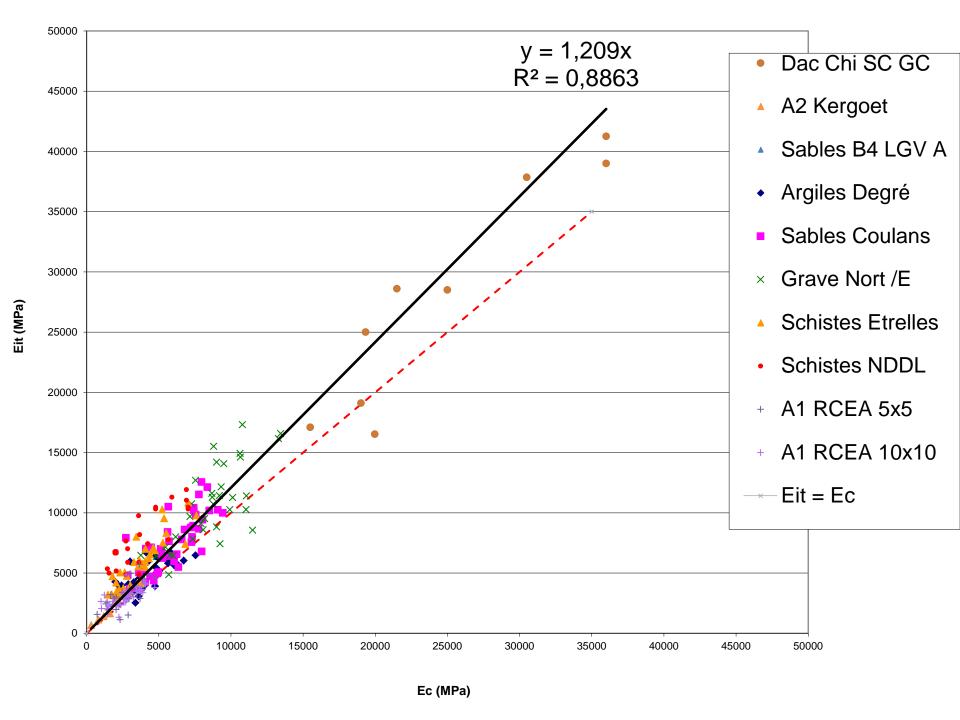

En traction:

rema Ouest DLAn

Causes de dispersions des mesures de module


Effet des gradients de densité à la fabrication des éprouvettes + dimensions (?)




Causes de dispersions des mesures de module

Imprécision sur la plage de déformation du module sécant :

- correction du début de courbe ?
- prise en compte des variations des mesures des capteurs ?
- utilisation le module tangent ou sécant ?
- => Écart de 1 à 2 (voire plus) sur le module calculé

Conclusion - Synthèse

	nb de		
Sol	valeurs	k moyen	k proposé
Sables et gr ciment (Dac Chi)	9	1,14	
Argiles A2 (Kergoet)	4	1,23	
Sables B4 LGV A	4	1,38	
Argiles Degré A2	39	1,15	1,25
Sables Coulans B5	40	1,26	
Graves Nort /E B4	35	1,23	
Limon RCEA A1	74	1,15	
Schistes NDDL B5	26	2,05	1,80
Schistes Etrelles A1/B5	42	1,51	1,00

Perspectives:

- mesure du module par méthode sismique (annexe C)
- valeurs de k pour des sols particuliers